Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Agric Food Chem ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181219

RESUMO

Cannabis is widely used for medicinal and recreational purposes. As a result, there is increased interest in its chemical components and their physiological effects. However, current information on cannabis chemistry is often outdated or scattered across many books and journals. To address this issue, we used modern metabolomics techniques and modern bioinformatics techniques to compile a comprehensive list of >6000 chemical constituents in commercial cannabis. The metabolomics methods included a combination of high- and low-resolution liquid chromatography-mass spectrometry (MS), gas chromatography-MS, and inductively coupled plasma-MS. The bioinformatics methods included computer-aided text mining and computational genome-scale metabolic inference. This information, along with detailed compound descriptions, physicochemical data, known physiological effects, protein targets, and referential compound spectra, has been made available through a publicly accessible database called the Cannabis Compound Database (https://cannabisdatabase.ca). Such a centralized, open-access resource should prove to be quite useful for the cannabis community.

3.
Pharmacol Rev ; 74(3): 506-551, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35710135

RESUMO

Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal ß -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.


Assuntos
Carnitina , Resistência à Insulina , Biomarcadores , Carnitina/análogos & derivados , Carnitina/química , Carnitina/metabolismo , Carnitina/uso terapêutico , Ácidos Graxos/metabolismo , Humanos , Resistência à Insulina/fisiologia
4.
J Anim Sci ; 98(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926096

RESUMO

Mutton and lamb sales continue to grow globally at a rate of 5% per year. However, sheep farming struggles with low profit margins due to high feed costs and modest carcass yields. Selecting those sheep expected to convert feed efficiently and have high carcass merit, as early as possible in their life cycle, could significantly improve the profitability of sheep farming. Unfortunately, direct measurement of feed conversion efficiency (via residual feed intake [RFI]) and carcass merit is a labor-intensive and expensive procedure. Thus, indirect, marker-assisted evaluation of these traits has been explored as a means of reducing the cost of its direct measurement. One promising and potentially inexpensive route to discover biomarkers of RFI and/or carcass merit is metabolomics. Using quantitative metabolomics, we profiled the blood serum metabolome (i.e., the sum of all measurable metabolites) associated with sheep RFI and carcass merit and identified candidate biomarkers of these traits. The study included 165 crossbred ram-lambs that underwent direct measurement of feed consumption to determine their RFI classification (i.e., low vs. high) using the GrowSafe System over a period 40 d. Carcass merit was evaluated after slaughter using standardized methods. Prior to being sent to slaughter, one blood sample was drawn from each animal, and serum prepared and frozen at -80 °C to limit metabolite degradation. A subset of the serum samples was selected based on divergent RFI and carcass quality for further metabolomic analyses. The analyses were conducted using three analytical methods (nuclear magnetic resonance spectroscopy, liquid chromatography mass spectrometry, and inductively coupled mass spectrometry), which permitted the identification and quantification of 161 unique metabolites. Biomarker analyses identified three significant (P < 0.05) candidate biomarkers of sheep RFI (AUC = 0.80), seven candidate biomarkers of carcass yield grade (AUC = 0.77), and one candidate biomarker of carcass muscle-to-bone ratio (AUC = 0.74). The identified biomarkers appear to have roles in regulating energy metabolism and protein synthesis. These results suggest that serum metabolites could be used to categorize and predict sheep for their RFI and carcass merit. Further validation using a larger (3×) and more diverse cohort of sheep is required to confirm these findings.


Assuntos
Ração Animal/análise , Biomarcadores/sangue , Ingestão de Alimentos , Metabolismo Energético , Metabolômica , Ovinos/metabolismo , Animais , Composição Corporal , Masculino , Fenótipo , Ovinos/sangue
5.
J Agric Food Chem ; 67(17): 4897-4914, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30994344

RESUMO

Bovine milk is a nutritionally rich, chemically complex biofluid consisting of hundreds of different components. While the chemical composition of cow's milk has been studied for decades, much of this information is fragmentary and very dated. In an effort to consolidate and update this information, we have applied modern, quantitative metabolomics techniques along with computer-aided literature mining to obtain the most comprehensive and up-to-date characterization of the chemical constituents in commercial cow's milk. Using nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography-mass spectrometry (LC-MS), and inductively coupled plasma-mass spectrometry (ICP-MS), we were able to identify and quantify 296 bovine milk metabolites or metabolite species (corresponding to 1447 unique structures) from a variety of commercial milk samples. Through our literature analysis, we also found another 676 metabolites or metabolite species (corresponding to 908 unique structures). Detailed information regarding all 2355 of the identified chemicals in bovine milk have been made freely available through a Web-accessible database called the Milk Composition Database or MCDB ( http://www.mcdb.ca/ ).


Assuntos
Leite/química , Animais , Bovinos/metabolismo , Cromatografia Líquida de Alta Pressão , Feminino , Espectroscopia de Ressonância Magnética , Leite/economia , Leite/metabolismo , Espectrometria de Massas em Tandem
6.
Anal Chim Acta ; 1030: 1-24, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30032758

RESUMO

Metabolomic analysis of human biospecimens had progressed quickly over the past decade. Technological and methodological advances have led to the comprehensive characterization of human serum, urine, cerebrospinal fluid and saliva metabolomes, and the creation of freely available metabolome reference databases. Unfortunately, the characterization of the human fecal metabolome still lags behind these other metabolomes in terms of the availability of standardized methods and freely available resources. The purpose of this review is to bring the knowledge of the human fecal metabolome, and the methods to characterize it, to the same level as most other human biofluid metabolomes. More specifically, this review is intended to critically assess the field of fecal metabolomics and to provide a comprehensive review of the current state of knowledge with regard to the protocols, technologies and remaining challenges in fecal metabolite analysis. In addition to providing an overview of fecal metabolomics and some consensus recommendations, we also present the human fecal metabolome database (HFMDB - http://www.fecalmetabolome.ca), a freely available, manually curated resource that currently contains over 6000 identified human fecal metabolites. Each entry in the HFMDB includes extensive chemical information, metabolite descriptions and reference data in the same format as the Human Metabolome Database (HMDB).


Assuntos
Bases de Dados Factuais , Fezes , Metabolômica , Humanos
7.
Nucleic Acids Res ; 46(D1): D608-D617, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29140435

RESUMO

The Human Metabolome Database or HMDB (www.hmdb.ca) is a web-enabled metabolomic database containing comprehensive information about human metabolites along with their biological roles, physiological concentrations, disease associations, chemical reactions, metabolic pathways, and reference spectra. First described in 2007, the HMDB is now considered the standard metabolomic resource for human metabolic studies. Over the past decade the HMDB has continued to grow and evolve in response to emerging needs for metabolomics researchers and continuing changes in web standards. This year's update, HMDB 4.0, represents the most significant upgrade to the database in its history. For instance, the number of fully annotated metabolites has increased by nearly threefold, the number of experimental spectra has grown by almost fourfold and the number of illustrated metabolic pathways has grown by a factor of almost 60. Significant improvements have also been made to the HMDB's chemical taxonomy, chemical ontology, spectral viewing, and spectral/text searching tools. A great deal of brand new data has also been added to HMDB 4.0. This includes large quantities of predicted MS/MS and GC-MS reference spectral data as well as predicted (physiologically feasible) metabolite structures to facilitate novel metabolite identification. Additional information on metabolite-SNP interactions and the influence of drugs on metabolite levels (pharmacometabolomics) has also been added. Many other important improvements in the content, the interface, and the performance of the HMDB website have been made and these should greatly enhance its ease of use and its potential applications in nutrition, biochemistry, clinical chemistry, clinical genetics, medicine, and metabolomics science.


Assuntos
Bases de Dados Factuais , Metaboloma , Bases de Dados de Compostos Químicos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Redes e Vias Metabólicas , Metabolômica , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas em Tandem , Interface Usuário-Computador
8.
PLoS One ; 12(5): e0177675, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28531195

RESUMO

Metabolomics uses advanced analytical chemistry techniques to comprehensively measure large numbers of small molecule metabolites in cells, tissues and biofluids. The ability to rapidly detect and quantify hundreds or even thousands of metabolites within a single sample is helping scientists paint a far more complete picture of system-wide metabolism and biology. Metabolomics is also allowing researchers to focus on measuring the end-products of complex, hard-to-decipher genetic, epigenetic and environmental interactions. As a result, metabolomics has become an increasingly popular "omics" approach to assist with the robust phenotypic characterization of humans, crop plants and model organisms. Indeed, metabolomics is now routinely used in biomedical, nutritional and crop research. It is also being increasingly used in livestock research and livestock monitoring. The purpose of this systematic review is to quantitatively and objectively summarize the current status of livestock metabolomics and to identify emerging trends, preferred technologies and important gaps in the field. In conducting this review we also critically assessed the applications of livestock metabolomics in key areas such as animal health assessment, disease diagnosis, bioproduct characterization and biomarker discovery for highly desirable economic traits (i.e., feed efficiency, growth potential and milk production). A secondary goal of this critical review was to compile data on the known composition of the livestock metabolome (for 5 of the most common livestock species namely cattle, sheep, goats, horses and pigs). These data have been made available through an open access, comprehensive livestock metabolome database (LMDB, available at http://www.lmdb.ca). The LMDB should enable livestock researchers and producers to conduct more targeted metabolomic studies and to identify where further metabolome coverage is needed.


Assuntos
Gado/crescimento & desenvolvimento , Metaboloma , Metabolômica/métodos , Animais , Bovinos , Bases de Dados de Compostos Químicos , Cabras , Cavalos , Internet , Gado/metabolismo , Locos de Características Quantitativas , Ovinos , Suínos
9.
Nucleic Acids Res ; 45(D1): D440-D445, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899612

RESUMO

YMDB or the Yeast Metabolome Database (http://www.ymdb.ca/) is a comprehensive database containing extensive information on the genome and metabolome of Saccharomyces cerevisiae Initially released in 2012, the YMDB has gone through a significant expansion and a number of improvements over the past 4 years. This manuscript describes the most recent version of YMDB (YMDB 2.0). More specifically, it provides an updated description of the database that was previously described in the 2012 NAR Database Issue and it details many of the additions and improvements made to the YMDB over that time. Some of the most important changes include a 7-fold increase in the number of compounds in the database (from 2007 to 16 042), a 430-fold increase in the number of metabolic and signaling pathway diagrams (from 66 to 28 734), a 16-fold increase in the number of compounds linked to pathways (from 742 to 12 733), a 17-fold increase in the numbers of compounds with nuclear magnetic resonance or MS spectra (from 783 to 13 173) and an increase in both the number of data fields and the number of links to external databases. In addition to these database expansions, a number of improvements to YMDB's web interface and its data visualization tools have been made. These additions and improvements should greatly improve the ease, the speed and the quantity of data that can be extracted, searched or viewed within YMDB. Overall, we believe these improvements should not only improve the understanding of the metabolism of S. cerevisiae, but also allow more in-depth exploration of its extensive metabolic networks, signaling pathways and biochemistry.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Metaboloma , Metabolômica , Software , Leveduras/metabolismo , Redes e Vias Metabólicas , Metabolômica/métodos , Navegador
10.
Nucleic Acids Res ; 44(D1): D495-501, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26481353

RESUMO

ECMDB or the Escherichia coli Metabolome Database (http://www.ecmdb.ca) is a comprehensive database containing detailed information about the genome and metabolome of E. coli (K-12). First released in 2012, the ECMDB has undergone substantial expansion and many modifications over the past 4 years. This manuscript describes the most recent version of ECMDB (ECMDB 2.0). In particular, it provides a comprehensive update of the database that was previously described in the 2013 NAR Database Issue and details many of the additions and improvements made to the ECMDB over that time. Some of the most important or significant enhancements include a 13-fold increase in the number of metabolic pathway diagrams (from 125 to 1650), a 3-fold increase in the number of compounds linked to pathways (from 1058 to 3280), the addition of dozens of operon/metabolite signalling pathways, a 44% increase in the number of compounds in the database (from 2610 to 3760), a 7-fold increase in the number of compounds with NMR or MS spectra (from 412 to 3261) and a massive increase in the number of external links to other E. coli or chemical resources. These additions, along with many other enhancements aimed at improving the ease or speed of querying, searching and viewing the data within ECMDB should greatly facilitate the understanding of not only the metabolism of E. coli, but also allow the in-depth exploration of its extensive metabolic networks, its many signalling pathways and its essential biochemistry.


Assuntos
Bases de Dados de Compostos Químicos , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Genoma Bacteriano , Metaboloma , Escherichia coli K12/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Redes e Vias Metabólicas
11.
Nucleic Acids Res ; 43(Database issue): D928-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25378312

RESUMO

The exposome is defined as the totality of all human environmental exposures from conception to death. It is often regarded as the complement to the genome, with the interaction between the exposome and the genome ultimately determining one's phenotype. The 'toxic exposome' is the complete collection of chronically or acutely toxic compounds to which humans can be exposed. Considerable interest in defining the toxic exposome has been spurred on by the realization that most human injuries, deaths and diseases are directly or indirectly caused by toxic substances found in the air, water, food, home or workplace. The Toxin-Toxin-Target Database (T3DB--www.t3db.ca) is a resource that was specifically designed to capture information about the toxic exposome. Originally released in 2010, the first version of T3DB contained data on nearly 2900 common toxic substances along with detailed information on their chemical properties, descriptions, targets, toxic effects, toxicity thresholds, sequences (for both targets and toxins), mechanisms and references. To more closely align itself with the needs of epidemiologists, toxicologists and exposome scientists, the latest release of T3DB has been substantially upgraded to include many more compounds (>3600), targets (>2000) and gene expression datasets (>15,000 genes). It now includes extensive data on 'normal' toxic compound concentrations in human biofluids as well as detailed chemical taxonomies, informative chemical ontologies and a large number of referential NMR, MS/MS and GC-MS spectra. This manuscript describes the most recent update to the T3DB, which was previously featured in the 2010 NAR Database Issue.


Assuntos
Bases de Dados de Compostos Químicos , Exposição Ambiental , Substâncias Perigosas/química , Substâncias Perigosas/toxicidade , Humanos , Internet
12.
Nucleic Acids Res ; 42(Database issue): D478-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24203708

RESUMO

The Small Molecule Pathway Database (SMPDB, http://www.smpdb.ca) is a comprehensive, colorful, fully searchable and highly interactive database for visualizing human metabolic, drug action, drug metabolism, physiological activity and metabolic disease pathways. SMPDB contains >600 pathways with nearly 75% of its pathways not found in any other database. All SMPDB pathway diagrams are extensively hyperlinked and include detailed information on the relevant tissues, organs, organelles, subcellular compartments, protein cofactors, protein locations, metabolite locations, chemical structures and protein quaternary structures. Since its last release in 2010, SMPDB has undergone substantial upgrades and significant expansion. In particular, the total number of pathways in SMPDB has grown by >70%. Additionally, every previously entered pathway has been completely redrawn, standardized, corrected, updated and enhanced with additional molecular or cellular information. Many SMPDB pathways now include transporter proteins as well as much more physiological, tissue, target organ and reaction compartment data. Thanks to the development of a standardized pathway drawing tool (called PathWhiz) all SMPDB pathways are now much more easily drawn and far more rapidly updated. PathWhiz has also allowed all SMPDB pathways to be saved in a BioPAX format. Significant improvements to SMPDB's visualization interface now make the browsing, selection, recoloring and zooming of pathways far easier and far more intuitive. Because of its utility and breadth of coverage, SMPDB is now integrated into several other databases including HMDB and DrugBank.


Assuntos
Bases de Dados de Compostos Químicos , Redes e Vias Metabólicas , Gráficos por Computador , Humanos , Internet , Doenças Metabólicas/metabolismo , Preparações Farmacêuticas/metabolismo , Proteínas/química , Proteínas/metabolismo
13.
Nucleic Acids Res ; 42(Database issue): D1091-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24203711

RESUMO

DrugBank (http://www.drugbank.ca) is a comprehensive online database containing extensive biochemical and pharmacological information about drugs, their mechanisms and their targets. Since it was first described in 2006, DrugBank has rapidly evolved, both in response to user requests and in response to changing trends in drug research and development. Previous versions of DrugBank have been widely used to facilitate drug and in silico drug target discovery. The latest update, DrugBank 4.0, has been further expanded to contain data on drug metabolism, absorption, distribution, metabolism, excretion and toxicity (ADMET) and other kinds of quantitative structure activity relationships (QSAR) information. These enhancements are intended to facilitate research in xenobiotic metabolism (both prediction and characterization), pharmacokinetics, pharmacodynamics and drug design/discovery. For this release, >1200 drug metabolites (including their structures, names, activity, abundance and other detailed data) have been added along with >1300 drug metabolism reactions (including metabolizing enzymes and reaction types) and dozens of drug metabolism pathways. Another 30 predicted or measured ADMET parameters have been added to each DrugCard, bringing the average number of quantitative ADMET values for Food and Drug Administration-approved drugs close to 40. Referential nuclear magnetic resonance and MS spectra have been added for almost 400 drugs as well as spectral and mass matching tools to facilitate compound identification. This expanded collection of drug information is complemented by a number of new or improved search tools, including one that provides a simple analyses of drug-target, -enzyme and -transporter associations to provide insight on drug-drug interactions.


Assuntos
Bases de Dados de Compostos Químicos , Descoberta de Drogas , Farmacocinética , Internet , Preparações Farmacêuticas/química , Relação Quantitativa Estrutura-Atividade
14.
PLoS One ; 8(9): e73076, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023812

RESUMO

Urine has long been a "favored" biofluid among metabolomics researchers. It is sterile, easy-to-obtain in large volumes, largely free from interfering proteins or lipids and chemically complex. However, this chemical complexity has also made urine a particularly difficult substrate to fully understand. As a biological waste material, urine typically contains metabolic breakdown products from a wide range of foods, drinks, drugs, environmental contaminants, endogenous waste metabolites and bacterial by-products. Many of these compounds are poorly characterized and poorly understood. In an effort to improve our understanding of this biofluid we have undertaken a comprehensive, quantitative, metabolome-wide characterization of human urine. This involved both computer-aided literature mining and comprehensive, quantitative experimental assessment/validation. The experimental portion employed NMR spectroscopy, gas chromatography mass spectrometry (GC-MS), direct flow injection mass spectrometry (DFI/LC-MS/MS), inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) experiments performed on multiple human urine samples. This multi-platform metabolomic analysis allowed us to identify 445 and quantify 378 unique urine metabolites or metabolite species. The different analytical platforms were able to identify (quantify) a total of: 209 (209) by NMR, 179 (85) by GC-MS, 127 (127) by DFI/LC-MS/MS, 40 (40) by ICP-MS and 10 (10) by HPLC. Our use of multiple metabolomics platforms and technologies allowed us to identify several previously unknown urine metabolites and to substantially enhance the level of metabolome coverage. It also allowed us to critically assess the relative strengths and weaknesses of different platforms or technologies. The literature review led to the identification and annotation of another 2206 urinary compounds and was used to help guide the subsequent experimental studies. An online database containing the complete set of 2651 confirmed human urine metabolite species, their structures (3079 in total), concentrations, related literature references and links to their known disease associations are freely available at http://www.urinemetabolome.ca.


Assuntos
Metaboloma , Urinálise , Bases de Dados Factuais , Humanos , Espectroscopia de Ressonância Magnética
15.
Nucleic Acids Res ; 41(Database issue): D625-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23109553

RESUMO

The Escherichia coli Metabolome Database (ECMDB, http://www.ecmdb.ca) is a comprehensively annotated metabolomic database containing detailed information about the metabolome of E. coli (K-12). Modelled closely on the Human and Yeast Metabolome Databases, the ECMDB contains >2600 metabolites with links to ∼1500 different genes and proteins, including enzymes and transporters. The information in the ECMDB has been collected from dozens of textbooks, journal articles and electronic databases. Each metabolite entry in the ECMDB contains an average of 75 separate data fields, including comprehensive compound descriptions, names and synonyms, chemical taxonomy, compound structural and physicochemical data, bacterial growth conditions and substrates, reactions, pathway information, enzyme data, gene/protein sequence data and numerous hyperlinks to images, references and other public databases. The ECMDB also includes an extensive collection of intracellular metabolite concentration data compiled from our own work as well as other published metabolomic studies. This information is further supplemented with thousands of fully assigned reference nuclear magnetic resonance and mass spectrometry spectra obtained from pure E. coli metabolites that we (and others) have collected. Extensive searching, relational querying and data browsing tools are also provided that support text, chemical structure, spectral, molecular weight and gene/protein sequence queries. Because of E. coli's importance as a model organism for biologists and as a biofactory for industry, we believe this kind of database could have considerable appeal not only to metabolomics researchers but also to molecular biologists, systems biologists and individuals in the biotechnology industry.


Assuntos
Bases de Dados Genéticas , Escherichia coli K12/metabolismo , Metaboloma , Escherichia coli K12/enzimologia , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Internet , Metaboloma/genética
16.
Nucleic Acids Res ; 41(Database issue): D801-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161693

RESUMO

The Human Metabolome Database (HMDB) (www.hmdb.ca) is a resource dedicated to providing scientists with the most current and comprehensive coverage of the human metabolome. Since its first release in 2007, the HMDB has been used to facilitate research for nearly 1000 published studies in metabolomics, clinical biochemistry and systems biology. The most recent release of HMDB (version 3.0) has been significantly expanded and enhanced over the 2009 release (version 2.0). In particular, the number of annotated metabolite entries has grown from 6500 to more than 40,000 (a 600% increase). This enormous expansion is a result of the inclusion of both 'detected' metabolites (those with measured concentrations or experimental confirmation of their existence) and 'expected' metabolites (those for which biochemical pathways are known or human intake/exposure is frequent but the compound has yet to be detected in the body). The latest release also has greatly increased the number of metabolites with biofluid or tissue concentration data, the number of compounds with reference spectra and the number of data fields per entry. In addition to this expansion in data quantity, new database visualization tools and new data content have been added or enhanced. These include better spectral viewing tools, more powerful chemical substructure searches, an improved chemical taxonomy and better, more interactive pathway maps. This article describes these enhancements to the HMDB, which was previously featured in the 2009 NAR Database Issue. (Note to referees, HMDB 3.0 will go live on 18 September 2012.).


Assuntos
Bases de Dados de Compostos Químicos , Metaboloma , Metabolômica , Humanos , Internet , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Interface Usuário-Computador
17.
Nucleic Acids Res ; 40(Web Server issue): W88-95, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22645318

RESUMO

With recent improvements in DNA sequencing and sample extraction techniques, the quantity and quality of metagenomic data are now growing exponentially. This abundance of richly annotated metagenomic data and bacterial census information has spawned a new branch of microbiology called comparative metagenomics. Comparative metagenomics involves the comparison of bacterial populations between different environmental samples, different culture conditions or different microbial hosts. However, in order to do comparative metagenomics, one typically requires a sophisticated knowledge of multivariate statistics and/or advanced software programming skills. To make comparative metagenomics more accessible to microbiologists, we have developed a freely accessible, easy-to-use web server for comparative metagenomic analysis called METAGENassist. Users can upload their bacterial census data from a wide variety of common formats, using either amplified 16S rRNA data or shotgun metagenomic data. Metadata concerning environmental, culture, or host conditions can also be uploaded. During the data upload process, METAGENassist also performs an automated taxonomic-to-phenotypic mapping. Phenotypic information covering nearly 20 functional categories such as GC content, genome size, oxygen requirements, energy sources and preferred temperature range is automatically generated from the taxonomic input data. Using this phenotypically enriched data, users can then perform a variety of multivariate and univariate data analyses including fold change analysis, t-tests, PCA, PLS-DA, clustering and classification. To facilitate data processing, users are guided through a step-by-step analysis workflow using a variety of menus, information hyperlinks and check boxes. METAGENassist also generates colorful, publication quality tables and graphs that can be downloaded and used directly in the preparation of scientific papers. METAGENassist is available at http://www.metagenassist.ca.


Assuntos
Bactérias/classificação , Metagenômica/métodos , Software , Bactérias/genética , Interpretação Estatística de Dados , Internet , Fenótipo
18.
Genome Med ; 4(4): 38, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-22546835

RESUMO

BACKGROUND: Human cerebral spinal fluid (CSF) is known to be a rich source of small molecule biomarkers for neurological and neurodegenerative diseases. In 2007, we conducted a comprehensive metabolomic study and performed a detailed literature review on metabolites that could be detected (via metabolomics or other techniques) in CSF. A total of 308 detectable metabolites were identified, of which only 23% were shown to be routinely identifiable or quantifiable with the metabolomics technologies available at that time. The continuing advancement in analytical technologies along with the growing interest in CSF metabolomics has led us to re-visit the human CSF metabolome and to re-assess both its size and the level of coverage than can be achieved with today's technologies. METHODS: We used five analytical platforms, including nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), direct flow injection-mass spectrometry (DFI-MS/MS) and inductively coupled plasma-mass spectrometry (ICP-MS) to perform quantitative metabolomics on multiple human CSF samples. This experimental work was complemented with an extensive literature review to acquire additional information on reported CSF compounds, their concentrations and their disease associations. RESULTS: NMR, GC-MS and LC-MS methods allowed the identification and quantification of 70 CSF metabolites (as previously reported). DFI-MS/MS allowed the quantification of 78 metabolites (6 acylcarnitines, 13 amino acids, hexose, 42 phosphatidylcholines, 2 lyso-phosphatidylcholines and 14 sphingolipids), while ICP-MS provided quantitative results for 33 metal ions in CSF. Literature analysis led to the identification of 57 more metabolites. In total, 476 compounds have now been confirmed to exist in human CSF. CONCLUSIONS: The use of improved metabolomic and other analytical techniques has led to a 54% increase in the known size of the human CSF metabolome over the past 5 years. Commonly available metabolomic methods, when combined, can now routinely identify and quantify 36% of the 'detectable' human CSF metabolome. Our experimental works measured 78 new metabolites that, as per our knowledge, have not been reported to be present in human CSF. An updated CSF metabolome database containing the complete set of 476 human CSF compounds, their concentrations, related literature references and links to their known disease associations is freely available at the CSF metabolome database.

19.
Nucleic Acids Res ; 40(Database issue): D815-20, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22064855

RESUMO

The Yeast Metabolome Database (YMDB, http://www.ymdb.ca) is a richly annotated 'metabolomic' database containing detailed information about the metabolome of Saccharomyces cerevisiae. Modeled closely after the Human Metabolome Database, the YMDB contains >2000 metabolites with links to 995 different genes/proteins, including enzymes and transporters. The information in YMDB has been gathered from hundreds of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the YMDB also contains an extensive collection of experimental intracellular and extracellular metabolite concentration data compiled from detailed Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) metabolomic analyses performed in our lab. This is further supplemented with thousands of NMR and MS spectra collected on pure, reference yeast metabolites. Each metabolite entry in the YMDB contains an average of 80 separate data fields including comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, intracellular/extracellular concentrations, growth conditions and substrates, pathway information, enzyme data, gene/protein sequence data, as well as numerous hyperlinks to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided that support text, chemical structure, spectral, molecular weight and gene/protein sequence queries. Because of S. cervesiae's importance as a model organism for biologists and as a biofactory for industry, we believe this kind of database could have considerable appeal not only to metabolomics researchers, but also to yeast biologists, systems biologists, the industrial fermentation industry, as well as the beer, wine and spirit industry.


Assuntos
Bases de Dados Factuais , Metaboloma , Saccharomyces cerevisiae/metabolismo , Genes Fúngicos , Internet , Espectrometria de Massas , Metabolômica , Ressonância Magnética Nuclear Biomolecular , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
PLoS One ; 6(2): e16957, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21359215

RESUMO

Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca.


Assuntos
Metaboloma/fisiologia , Soro/metabolismo , Adulto , Idoso , Análise Química do Sangue/métodos , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Estudos de Casos e Controles , Bases de Dados de Proteínas , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Saúde , Humanos , Lipídeos/análise , Lipídeos/sangue , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Ressonância Magnética Nuclear Biomolecular , Concentração Osmolar , Literatura de Revisão como Assunto , Soro/química , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...